Light-Dependent Modulation of Shab Channels via Phosphoinositide Depletion in Drosophila Photoreceptors

نویسندگان

  • Yani Krause
  • Stephan Krause
  • Jiehong Huang
  • Che-Hsiung Liu
  • Roger C. Hardie
  • Matti Weckström
چکیده

The Drosophila phototransduction cascade transforms light into depolarizations that are further shaped by activation of voltage-dependent K+ (Kv) channels. In whole-cell recordings of isolated photoreceptors, we show that light selectively modulated the delayed rectifier (Shab) current. Shab currents were increased by light with similar kinetics to the light-induced current itself (latency approximately 20 ms), recovering to control values with a t(1/2) of approximately 60 s in darkness. Genetic disruption of PLCbeta4, responsible for light-induced PIP(2) hydrolysis, abolished this light-dependent modulation. In mutants of CDP-diaclyglycerol synthase (cds(1)), required for PIP(2) resynthesis, the modulation became irreversible, but exogenously applied PIP(2) restored reversibility. The modulation was accurately and reversibly mimicked by application of PIP(2) to heterologously expressed Shab channels in excised inside-out patches. The results indicate a functionally implemented mechanism of Kv channel modulation by PIP(2) in photoreceptors, which enables light-dependent regulation of signal processing by direct coupling to the phototransduction cascade.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of TRP Channels by Protons and Phosphoinositide Depletion in Drosophila Photoreceptors

BACKGROUND Phototransduction in microvillar photoreceptors is mediated via G protein-coupled phospholipase C (PLC), but how PLC activation leads to the opening of the light-sensitive TRPC channels (TRP and TRPL) remains unresolved. In Drosophila, InsP(3) appears not to be involved, and recent studies have implicated lipid products of PLC activity, e.g., diacylglycerol, its metabolites, or the r...

متن کامل

VOLTAGE-GATED K+ CHANNELS IN DROSOPHILA PHOTORECEPTORS Biophysical study of neural coding

The activity of neurons is critically dependent upon the suite of voltage-dependent ion channels expressed in their membranes. In particular, voltage-gated K+ channels are extremely diverse in their function, contributing to the regulation of distinct aspects of neuronal activity by shaping the voltage responses. In this study the role of K+ channels in neural coding is investigated in Drosophi...

متن کامل

Robustness of neural coding in Drosophila photoreceptors in the absence of slow delayed rectifier K+ channels.

Determining the contribution of a single type of ion channel to information processing within a neuron requires not only knowledge of the properties of the channel but also understanding of its function within a complex system. We studied the contribution of slow delayed rectifier K+ channels to neural coding in Drosophila photoreceptors by combining genetic and electrophysiological approaches ...

متن کامل

Calcium Influx via TRP Channels Is Required to Maintain PIP2 Levels in Drosophila Photoreceptors

The trp (transient receptor potential) gene encodes a Ca2+ channel responsible for the major component of the phospholipase C (PLC) mediated light response in Drosophila. In trp mutants, maintained light leads to response decay and temporary total loss of sensitivity (inactivation). Using genetically targeted PIP2-sensitive inward rectifier channels (Kir2.1) as biosensors, we provide evidence t...

متن کامل

TRP, TRPL and Cacophony Channels Mediate Ca2+ Influx and Exocytosis in Photoreceptors Axons in Drosophila

In Drosophila photoreceptors Ca(2+)-permeable channels TRP and TRPL are the targets of phototransduction, occurring in photosensitive microvilli and mediated by a phospholipase C (PLC) pathway. Using a novel Drosophila brain slice preparation, we studied the distribution and physiological properties of TRP and TRPL in the lamina of the visual system. Immunohistochemical images revealed consider...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2008